3.2426 \(\int \frac{(5-x) (2+5 x+3 x^2)^{3/2}}{(3+2 x)^4} \, dx\)

Optimal. Leaf size=137 \[ \frac{(342 x+383) \left (3 x^2+5 x+2\right )^{3/2}}{120 (2 x+3)^3}-\frac{(402 x+845) \sqrt{3 x^2+5 x+2}}{160 (2 x+3)}+\frac{51}{32} \sqrt{3} \tanh ^{-1}\left (\frac{6 x+5}{2 \sqrt{3} \sqrt{3 x^2+5 x+2}}\right )-\frac{1973 \tanh ^{-1}\left (\frac{8 x+7}{2 \sqrt{5} \sqrt{3 x^2+5 x+2}}\right )}{320 \sqrt{5}} \]

[Out]

-((845 + 402*x)*Sqrt[2 + 5*x + 3*x^2])/(160*(3 + 2*x)) + ((383 + 342*x)*(2 + 5*x + 3*x^2)^(3/2))/(120*(3 + 2*x
)^3) + (51*Sqrt[3]*ArcTanh[(5 + 6*x)/(2*Sqrt[3]*Sqrt[2 + 5*x + 3*x^2])])/32 - (1973*ArcTanh[(7 + 8*x)/(2*Sqrt[
5]*Sqrt[2 + 5*x + 3*x^2])])/(320*Sqrt[5])

________________________________________________________________________________________

Rubi [A]  time = 0.0810219, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {810, 812, 843, 621, 206, 724} \[ \frac{(342 x+383) \left (3 x^2+5 x+2\right )^{3/2}}{120 (2 x+3)^3}-\frac{(402 x+845) \sqrt{3 x^2+5 x+2}}{160 (2 x+3)}+\frac{51}{32} \sqrt{3} \tanh ^{-1}\left (\frac{6 x+5}{2 \sqrt{3} \sqrt{3 x^2+5 x+2}}\right )-\frac{1973 \tanh ^{-1}\left (\frac{8 x+7}{2 \sqrt{5} \sqrt{3 x^2+5 x+2}}\right )}{320 \sqrt{5}} \]

Antiderivative was successfully verified.

[In]

Int[((5 - x)*(2 + 5*x + 3*x^2)^(3/2))/(3 + 2*x)^4,x]

[Out]

-((845 + 402*x)*Sqrt[2 + 5*x + 3*x^2])/(160*(3 + 2*x)) + ((383 + 342*x)*(2 + 5*x + 3*x^2)^(3/2))/(120*(3 + 2*x
)^3) + (51*Sqrt[3]*ArcTanh[(5 + 6*x)/(2*Sqrt[3]*Sqrt[2 + 5*x + 3*x^2])])/32 - (1973*ArcTanh[(7 + 8*x)/(2*Sqrt[
5]*Sqrt[2 + 5*x + 3*x^2])])/(320*Sqrt[5])

Rule 810

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Si
mp[((d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*((d*g - e*f*(m + 2))*(c*d^2 - b*d*e + a*e^2) - d*p*(2*c*d - b*e)*(e*
f - d*g) - e*(g*(m + 1)*(c*d^2 - b*d*e + a*e^2) + p*(2*c*d - b*e)*(e*f - d*g))*x))/(e^2*(m + 1)*(m + 2)*(c*d^2
 - b*d*e + a*e^2)), x] - Dist[p/(e^2*(m + 1)*(m + 2)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 2)*(a + b*x
+ c*x^2)^(p - 1)*Simp[2*a*c*e*(e*f - d*g)*(m + 2) + b^2*e*(d*g*(p + 1) - e*f*(m + p + 2)) + b*(a*e^2*g*(m + 1)
 - c*d*(d*g*(2*p + 1) - e*f*(m + 2*p + 2))) - c*(2*c*d*(d*g*(2*p + 1) - e*f*(m + 2*p + 2)) - e*(2*a*e*g*(m + 1
) - b*(d*g*(m - 2*p) + e*f*(m + 2*p + 2))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*a*
c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && LtQ[m, -2] && LtQ[m + 2*p, 0] &&  !ILtQ[m + 2*p + 3, 0]

Rule 812

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((d + e*x)^(m + 1)*(e*f*(m + 2*p + 2) - d*g*(2*p + 1) + e*g*(m + 1)*x)*(a + b*x + c*x^2)^p)/(e^2*(m + 1)*(m
+ 2*p + 2)), x] + Dist[p/(e^2*(m + 1)*(m + 2*p + 2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p - 1)*Simp[g*(
b*d + 2*a*e + 2*a*e*m + 2*b*d*p) - f*b*e*(m + 2*p + 2) + (g*(2*c*d + b*e + b*e*m + 4*c*d*p) - 2*c*e*f*(m + 2*p
 + 2))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2
, 0] && RationalQ[p] && p > 0 && (LtQ[m, -1] || EqQ[p, 1] || (IntegerQ[p] &&  !RationalQ[m])) && NeQ[m, -1] &&
  !ILtQ[m + 2*p + 1, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{(5-x) \left (2+5 x+3 x^2\right )^{3/2}}{(3+2 x)^4} \, dx &=\frac{(383+342 x) \left (2+5 x+3 x^2\right )^{3/2}}{120 (3+2 x)^3}-\frac{1}{80} \int \frac{(361+402 x) \sqrt{2+5 x+3 x^2}}{(3+2 x)^2} \, dx\\ &=-\frac{(845+402 x) \sqrt{2+5 x+3 x^2}}{160 (3+2 x)}+\frac{(383+342 x) \left (2+5 x+3 x^2\right )^{3/2}}{120 (3+2 x)^3}+\frac{1}{640} \int \frac{5234+6120 x}{(3+2 x) \sqrt{2+5 x+3 x^2}} \, dx\\ &=-\frac{(845+402 x) \sqrt{2+5 x+3 x^2}}{160 (3+2 x)}+\frac{(383+342 x) \left (2+5 x+3 x^2\right )^{3/2}}{120 (3+2 x)^3}+\frac{153}{32} \int \frac{1}{\sqrt{2+5 x+3 x^2}} \, dx-\frac{1973}{320} \int \frac{1}{(3+2 x) \sqrt{2+5 x+3 x^2}} \, dx\\ &=-\frac{(845+402 x) \sqrt{2+5 x+3 x^2}}{160 (3+2 x)}+\frac{(383+342 x) \left (2+5 x+3 x^2\right )^{3/2}}{120 (3+2 x)^3}+\frac{153}{16} \operatorname{Subst}\left (\int \frac{1}{12-x^2} \, dx,x,\frac{5+6 x}{\sqrt{2+5 x+3 x^2}}\right )+\frac{1973}{160} \operatorname{Subst}\left (\int \frac{1}{20-x^2} \, dx,x,\frac{-7-8 x}{\sqrt{2+5 x+3 x^2}}\right )\\ &=-\frac{(845+402 x) \sqrt{2+5 x+3 x^2}}{160 (3+2 x)}+\frac{(383+342 x) \left (2+5 x+3 x^2\right )^{3/2}}{120 (3+2 x)^3}+\frac{51}{32} \sqrt{3} \tanh ^{-1}\left (\frac{5+6 x}{2 \sqrt{3} \sqrt{2+5 x+3 x^2}}\right )-\frac{1973 \tanh ^{-1}\left (\frac{7+8 x}{2 \sqrt{5} \sqrt{2+5 x+3 x^2}}\right )}{320 \sqrt{5}}\\ \end{align*}

Mathematica [A]  time = 0.109393, size = 110, normalized size = 0.8 \[ \frac{-\frac{10 \sqrt{3 x^2+5 x+2} \left (720 x^3+13176 x^2+30878 x+19751\right )}{(2 x+3)^3}+5919 \sqrt{5} \tanh ^{-1}\left (\frac{-8 x-7}{2 \sqrt{5} \sqrt{3 x^2+5 x+2}}\right )+7650 \sqrt{3} \tanh ^{-1}\left (\frac{6 x+5}{2 \sqrt{9 x^2+15 x+6}}\right )}{4800} \]

Antiderivative was successfully verified.

[In]

Integrate[((5 - x)*(2 + 5*x + 3*x^2)^(3/2))/(3 + 2*x)^4,x]

[Out]

((-10*Sqrt[2 + 5*x + 3*x^2]*(19751 + 30878*x + 13176*x^2 + 720*x^3))/(3 + 2*x)^3 + 5919*Sqrt[5]*ArcTanh[(-7 -
8*x)/(2*Sqrt[5]*Sqrt[2 + 5*x + 3*x^2])] + 7650*Sqrt[3]*ArcTanh[(5 + 6*x)/(2*Sqrt[6 + 15*x + 9*x^2])])/4800

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 200, normalized size = 1.5 \begin{align*} -{\frac{37}{600} \left ( 3\, \left ( x+3/2 \right ) ^{2}-4\,x-{\frac{19}{4}} \right ) ^{{\frac{5}{2}}} \left ( x+{\frac{3}{2}} \right ) ^{-2}}-{\frac{158}{375} \left ( 3\, \left ( x+3/2 \right ) ^{2}-4\,x-{\frac{19}{4}} \right ) ^{{\frac{5}{2}}} \left ( x+{\frac{3}{2}} \right ) ^{-1}}-{\frac{1973}{3000} \left ( 3\, \left ( x+3/2 \right ) ^{2}-4\,x-{\frac{19}{4}} \right ) ^{{\frac{3}{2}}}}+{\frac{605+726\,x}{400}\sqrt{3\, \left ( x+3/2 \right ) ^{2}-4\,x-{\frac{19}{4}}}}+{\frac{51\,\sqrt{3}}{32}\ln \left ({\frac{\sqrt{3}}{3} \left ({\frac{5}{2}}+3\,x \right ) }+\sqrt{3\, \left ( x+3/2 \right ) ^{2}-4\,x-{\frac{19}{4}}} \right ) }-{\frac{1973}{1600}\sqrt{12\, \left ( x+3/2 \right ) ^{2}-16\,x-19}}+{\frac{1973\,\sqrt{5}}{1600}{\it Artanh} \left ({\frac{2\,\sqrt{5}}{5} \left ( -{\frac{7}{2}}-4\,x \right ){\frac{1}{\sqrt{12\, \left ( x+3/2 \right ) ^{2}-16\,x-19}}}} \right ) }+{\frac{395+474\,x}{375} \left ( 3\, \left ( x+3/2 \right ) ^{2}-4\,x-{\frac{19}{4}} \right ) ^{{\frac{3}{2}}}}-{\frac{13}{120} \left ( 3\, \left ( x+3/2 \right ) ^{2}-4\,x-{\frac{19}{4}} \right ) ^{{\frac{5}{2}}} \left ( x+{\frac{3}{2}} \right ) ^{-3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5-x)*(3*x^2+5*x+2)^(3/2)/(3+2*x)^4,x)

[Out]

-37/600/(x+3/2)^2*(3*(x+3/2)^2-4*x-19/4)^(5/2)-158/375/(x+3/2)*(3*(x+3/2)^2-4*x-19/4)^(5/2)-1973/3000*(3*(x+3/
2)^2-4*x-19/4)^(3/2)+121/400*(5+6*x)*(3*(x+3/2)^2-4*x-19/4)^(1/2)+51/32*ln(1/3*(5/2+3*x)*3^(1/2)+(3*(x+3/2)^2-
4*x-19/4)^(1/2))*3^(1/2)-1973/1600*(12*(x+3/2)^2-16*x-19)^(1/2)+1973/1600*5^(1/2)*arctanh(2/5*(-7/2-4*x)*5^(1/
2)/(12*(x+3/2)^2-16*x-19)^(1/2))+79/375*(5+6*x)*(3*(x+3/2)^2-4*x-19/4)^(3/2)-13/120/(x+3/2)^3*(3*(x+3/2)^2-4*x
-19/4)^(5/2)

________________________________________________________________________________________

Maxima [A]  time = 1.49251, size = 258, normalized size = 1.88 \begin{align*} \frac{37}{200} \,{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac{3}{2}} - \frac{13 \,{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac{5}{2}}}{15 \,{\left (8 \, x^{3} + 36 \, x^{2} + 54 \, x + 27\right )}} - \frac{37 \,{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac{5}{2}}}{150 \,{\left (4 \, x^{2} + 12 \, x + 9\right )}} + \frac{363}{200} \, \sqrt{3 \, x^{2} + 5 \, x + 2} x + \frac{51}{32} \, \sqrt{3} \log \left (\sqrt{3} \sqrt{3 \, x^{2} + 5 \, x + 2} + 3 \, x + \frac{5}{2}\right ) + \frac{1973}{1600} \, \sqrt{5} \log \left (\frac{\sqrt{5} \sqrt{3 \, x^{2} + 5 \, x + 2}}{{\left | 2 \, x + 3 \right |}} + \frac{5}{2 \,{\left | 2 \, x + 3 \right |}} - 2\right ) - \frac{763}{800} \, \sqrt{3 \, x^{2} + 5 \, x + 2} - \frac{79 \,{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac{3}{2}}}{75 \,{\left (2 \, x + 3\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x^2+5*x+2)^(3/2)/(3+2*x)^4,x, algorithm="maxima")

[Out]

37/200*(3*x^2 + 5*x + 2)^(3/2) - 13/15*(3*x^2 + 5*x + 2)^(5/2)/(8*x^3 + 36*x^2 + 54*x + 27) - 37/150*(3*x^2 +
5*x + 2)^(5/2)/(4*x^2 + 12*x + 9) + 363/200*sqrt(3*x^2 + 5*x + 2)*x + 51/32*sqrt(3)*log(sqrt(3)*sqrt(3*x^2 + 5
*x + 2) + 3*x + 5/2) + 1973/1600*sqrt(5)*log(sqrt(5)*sqrt(3*x^2 + 5*x + 2)/abs(2*x + 3) + 5/2/abs(2*x + 3) - 2
) - 763/800*sqrt(3*x^2 + 5*x + 2) - 79/75*(3*x^2 + 5*x + 2)^(3/2)/(2*x + 3)

________________________________________________________________________________________

Fricas [A]  time = 1.46528, size = 477, normalized size = 3.48 \begin{align*} \frac{7650 \, \sqrt{3}{\left (8 \, x^{3} + 36 \, x^{2} + 54 \, x + 27\right )} \log \left (4 \, \sqrt{3} \sqrt{3 \, x^{2} + 5 \, x + 2}{\left (6 \, x + 5\right )} + 72 \, x^{2} + 120 \, x + 49\right ) + 5919 \, \sqrt{5}{\left (8 \, x^{3} + 36 \, x^{2} + 54 \, x + 27\right )} \log \left (-\frac{4 \, \sqrt{5} \sqrt{3 \, x^{2} + 5 \, x + 2}{\left (8 \, x + 7\right )} - 124 \, x^{2} - 212 \, x - 89}{4 \, x^{2} + 12 \, x + 9}\right ) - 20 \,{\left (720 \, x^{3} + 13176 \, x^{2} + 30878 \, x + 19751\right )} \sqrt{3 \, x^{2} + 5 \, x + 2}}{9600 \,{\left (8 \, x^{3} + 36 \, x^{2} + 54 \, x + 27\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x^2+5*x+2)^(3/2)/(3+2*x)^4,x, algorithm="fricas")

[Out]

1/9600*(7650*sqrt(3)*(8*x^3 + 36*x^2 + 54*x + 27)*log(4*sqrt(3)*sqrt(3*x^2 + 5*x + 2)*(6*x + 5) + 72*x^2 + 120
*x + 49) + 5919*sqrt(5)*(8*x^3 + 36*x^2 + 54*x + 27)*log(-(4*sqrt(5)*sqrt(3*x^2 + 5*x + 2)*(8*x + 7) - 124*x^2
 - 212*x - 89)/(4*x^2 + 12*x + 9)) - 20*(720*x^3 + 13176*x^2 + 30878*x + 19751)*sqrt(3*x^2 + 5*x + 2))/(8*x^3
+ 36*x^2 + 54*x + 27)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int - \frac{10 \sqrt{3 x^{2} + 5 x + 2}}{16 x^{4} + 96 x^{3} + 216 x^{2} + 216 x + 81}\, dx - \int - \frac{23 x \sqrt{3 x^{2} + 5 x + 2}}{16 x^{4} + 96 x^{3} + 216 x^{2} + 216 x + 81}\, dx - \int - \frac{10 x^{2} \sqrt{3 x^{2} + 5 x + 2}}{16 x^{4} + 96 x^{3} + 216 x^{2} + 216 x + 81}\, dx - \int \frac{3 x^{3} \sqrt{3 x^{2} + 5 x + 2}}{16 x^{4} + 96 x^{3} + 216 x^{2} + 216 x + 81}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x**2+5*x+2)**(3/2)/(3+2*x)**4,x)

[Out]

-Integral(-10*sqrt(3*x**2 + 5*x + 2)/(16*x**4 + 96*x**3 + 216*x**2 + 216*x + 81), x) - Integral(-23*x*sqrt(3*x
**2 + 5*x + 2)/(16*x**4 + 96*x**3 + 216*x**2 + 216*x + 81), x) - Integral(-10*x**2*sqrt(3*x**2 + 5*x + 2)/(16*
x**4 + 96*x**3 + 216*x**2 + 216*x + 81), x) - Integral(3*x**3*sqrt(3*x**2 + 5*x + 2)/(16*x**4 + 96*x**3 + 216*
x**2 + 216*x + 81), x)

________________________________________________________________________________________

Giac [B]  time = 1.26869, size = 412, normalized size = 3.01 \begin{align*} -\frac{1973}{1600} \, \sqrt{5} \log \left (\frac{{\left | -4 \, \sqrt{3} x - 2 \, \sqrt{5} - 6 \, \sqrt{3} + 4 \, \sqrt{3 \, x^{2} + 5 \, x + 2} \right |}}{{\left | -4 \, \sqrt{3} x + 2 \, \sqrt{5} - 6 \, \sqrt{3} + 4 \, \sqrt{3 \, x^{2} + 5 \, x + 2} \right |}}\right ) - \frac{51}{32} \, \sqrt{3} \log \left ({\left | -2 \, \sqrt{3}{\left (\sqrt{3} x - \sqrt{3 \, x^{2} + 5 \, x + 2}\right )} - 5 \right |}\right ) - \frac{3}{16} \, \sqrt{3 \, x^{2} + 5 \, x + 2} - \frac{62484 \,{\left (\sqrt{3} x - \sqrt{3 \, x^{2} + 5 \, x + 2}\right )}^{5} + 390510 \, \sqrt{3}{\left (\sqrt{3} x - \sqrt{3 \, x^{2} + 5 \, x + 2}\right )}^{4} + 2835190 \,{\left (\sqrt{3} x - \sqrt{3 \, x^{2} + 5 \, x + 2}\right )}^{3} + 3307455 \, \sqrt{3}{\left (\sqrt{3} x - \sqrt{3 \, x^{2} + 5 \, x + 2}\right )}^{2} + 5598195 \, \sqrt{3} x + 1227924 \, \sqrt{3} - 5598195 \, \sqrt{3 \, x^{2} + 5 \, x + 2}}{480 \,{\left (2 \,{\left (\sqrt{3} x - \sqrt{3 \, x^{2} + 5 \, x + 2}\right )}^{2} + 6 \, \sqrt{3}{\left (\sqrt{3} x - \sqrt{3 \, x^{2} + 5 \, x + 2}\right )} + 11\right )}^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)*(3*x^2+5*x+2)^(3/2)/(3+2*x)^4,x, algorithm="giac")

[Out]

-1973/1600*sqrt(5)*log(abs(-4*sqrt(3)*x - 2*sqrt(5) - 6*sqrt(3) + 4*sqrt(3*x^2 + 5*x + 2))/abs(-4*sqrt(3)*x +
2*sqrt(5) - 6*sqrt(3) + 4*sqrt(3*x^2 + 5*x + 2))) - 51/32*sqrt(3)*log(abs(-2*sqrt(3)*(sqrt(3)*x - sqrt(3*x^2 +
 5*x + 2)) - 5)) - 3/16*sqrt(3*x^2 + 5*x + 2) - 1/480*(62484*(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2))^5 + 390510*sq
rt(3)*(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2))^4 + 2835190*(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2))^3 + 3307455*sqrt(3)*
(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2))^2 + 5598195*sqrt(3)*x + 1227924*sqrt(3) - 5598195*sqrt(3*x^2 + 5*x + 2))/(
2*(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2))^2 + 6*sqrt(3)*(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2)) + 11)^3